Is Artificial Intelligence (AI) and Machine Learning (ML) the Solution to our Network Management Challenges?

Petros Mouchtaris
President, Perspecta Labs

IFIP/IEEE International Symposium on Integrated Network Management
April 10, 2019

(c) 2019 Perspecta Labs
Overview

• Complexity is driving the need for automation in network management
• What are important characteristics of Artificial Intelligence (AI) and Machine Learning (ML)?
• Where has AI/ML been used successfully in the past?
• What are the limitations of AI/ML?
• How do we proceed?
Evolution of networks

• Several key aspects of networks are rapidly increasing:
 • Number of devices
 • Heterogeneity (different networks, different vendors, different devices)
 • Mobility
 • Speed of network and bandwidth
• At the same time, the number of human network management experts is not keeping pace
 • The scope and change of networks is difficult for humans to keep up with
• Security concerns are adding another dimension
 • IoT in particular
Evolution towards 5G

- Increased data rates
 - 10x to 100x improvement
- Low latency (1ms)
- Reduction in energy usage
- Increase in heterogeneity
- Large number of use cases
 - Diversity
- Enables Internet of Things (IoT)
 - Explosion in number of devices

Smart Cities and Internet of Things (IoT)

- 30B+ devices connected to the network by 2020
- 10+ connected devices per person in US already
- Diversity of applications, vendors, protocols, service providers
- Who and how can anyone figure out what’s wrong
- Introduces significant security and privacy concerns

Source: CISCO IBSG
Challenge: Security and Privacy

• Low cost and small memory footprint in IoT devices result in rudimentary security functionality
• IoT devices are difficult to patch due to scale and accessibility
• Many IoT builders use third party security solutions without deep understanding of the overall security architecture
• Internet connectivity and proliferation of attack software enable remote attacks
• Many IoT devices have wireless communication with no privacy
 • Wireless attack tools are becoming much more inexpensive

Mirai Botnet Map - 150,000 devices - 1Tbps DDoS traffic
Network Function Virtualization (NFV)

- Network devices (router, switch, middle-box, etc.) have been vertically integrated systems
 - Typically expensive with significant barriers to competition
 - Adding new functionality is a slow and expensive process (at the control of the vendor)

- Disaggregation has many advantages
 - Use commodity hardware (cheaper)
 - Mix and match best of breed
 - Scalability (adapt quickly to demand growth)
 - Opportunities for innovation (faster)

- Disaggregation introduces challenges
 - How components interact with each other
 - Identifying/addressing problems
 - Heterogeneity
 - Increased speed of change
Software-Defined Networking (SDN)

- Software-Defined Networking (SDN)
 - open systems and standards-based components
 - Commodity L2/L3 Switch-Router hardware
- Key advantages:
 - Ability to centralize network provisioning (reduced cost?)
 - Improved security management
 - Reduced hardware costs (using commodity hardware)
 - Increased complexity (especially with hybrid architectures)
 - Another dimension of heterogeneity
 - Increased speed of change
Is AI the solution to our Network Management Challenges?

- Network management requirements for future networks are becoming too difficult for humans:
 - Scalability
 - Heterogeneity
 - Speed of change
 - Amount of data
 - Speed of information
 - Security requirements

Source: The CyberSecurity Place
Basics of Artificial Intelligence

- Artificial Intelligence (AI) = A system’s ability to correctly interpret external data, to learn from such data, and to use those learnings to achieve specific goals and tasks through flexible adaptation
 - Professor McCarthy coined the term "artificial intelligence" in 1955

- Machine Learning (ML) = The field of study that gives computers the ability to learn without being explicitly programmed.
 - Arthur Samuel (IBM) coined the term “Machine Learning” in 1959,

- (Artificial) Neural Networks are a key part of machine learning. Neural Network = a computer system designed to work by classifying information in the same way a human brain does.

- ML is a subset of AI but key area of focus in today's research efforts
Machine Learning Basics

- Four broad categories of problems ML is being applied to: clustering, classification, regression, and rule extraction
- Typical learning approaches:
 - Supervised or semi supervised
 - Unsupervised (automated groupings in clusters)
 - Reinforcement Learning: agent interacts with the external world and learns by exploring the environment maximize cumulative reward
- Typical machine learning models:
 - Artificial neural networks. More recently Deep Learning (neural networks with a large number of layers)
 - Support Vector Machines (SVM)
 - Bayesian Networks (fault management)
 - Genetic algorithms
Enablers & Continuing Challenges in Machine Learning

• Explosion in availability of data (critical for ML)
• Significant improvements in ML techniques (e.g. Deep Learning)
• New computing platforms:
 • Cloud, Graphics Processing Units (GPUs), Tensor Processing Units (TPUs) provide accelerated
• However, AI/ML still requires deep expertise for designing, developing, and evolving systems
• Feature extraction
 • Tradeoffs between over-fitting for higher accuracy and lower computational overhead.
 • It is essential to select features that do not contradict underlying assumptions in the context of the problem.
• Dealing with a changing environment
• Creating a robust solution
Successful Application of AI/ML

- Jeopardy, chess, various games
- Autonomous vehicles & drones
- Object detection, image recognition (e.g. Facebook)
- NLP, Google Translate, Siri, Alexa, and other assistants
- Recommender systems, online adds (Netflix, Amazon, Google)
- Automated response systems and chatbots
- Robotic Process Automation
- E-mail filters
- Google predictive searches
- Fraud detection

Common characteristics:
- Mostly in areas that mistakes are ok. Autonomous platforms an exception.
- Need a lot of data for training
What can machines do better than humans

- Performing repeatable and well structured tasks (no mistakes)
- Searching and analyzing large amounts of data (finding patterns)
- Speed of execution
- Remembering things
- Deal with stress, tiredness, emotions
- Making decisions with no biases
- Providing extremely accurate answers
What can machines not do as well (at least as of today)

• Dealing with changing not well structured environments
• Dealing with unpredictability
• Understanding why
• Helping others or managing others
• Understanding hidden meanings
• Explain things
• Being creative
• Demonstrate empathy
Can AI/ML be used in Network Management?

- Large amounts of data available for learning
 - Traffic load, Performance data, Syslog, Trouble tickets, social media messages (e.g. Twitter), Numerical, text, …
- Significant progress in use of AI/ML already in certain areas *
 - Traffic analysis and prediction
 - Traffic classification
 - Resource management & admission control
 - Fault & performance management
 - Network security
- However networks are very diverse. What works in one may not work in another.
- Networks continue to evolve and change
- There are unpredictable events and surprises
- What choice do we have?

Situational Awareness Of Large Systems Through Machine Learning

- Perspecta Labs MANTESSA data analytics extracts power grid situational awareness from non-grid sources: social media, Internet measurements, and satellite imagery
- Results show good correspondence to official outage reports and news
Machine Learning for Cyber Security In Action
Risks of Using AI/ML

- Accidents are still possible with AI/ML
 - The New York Times reported (2018) that Uber's self-driving technology worked on average for just 13 miles in Arizona before requiring human correction to avoid a crash. Waymo did do much better.
 - There have been 104 collision reports involving self-driving cars in CA since 2014 (Wired 10/2018)
 - There has been a small number of fatalities with self-driving cars
- There are also moral dilemmas to consider:
 - How to program decisions on what the vehicle should do when loss of life is unavoidable
 - There are concerns (and some indications) that AI decisions may still be biased
Adversarial Machine Learning

- Small perturbations (imperceptible to humans) in input data can result in misclassification by ML algorithms
- Most examples in the space of image classification
- Examples emerging in other domains, such as audio, text, cyber data

Carlini et al., Audio Adversarial Examples: Targeted Attacks on Speech-to-Text, DLS Workshop 2018

Yuan et al., CommanderSong: A Systematic Approach for Practical Adversarial Voice Recognition, USENIX Security 2018

https://blog.openai.com/adversarial-example-research/
Path forward

- Humans and machines need to collaborate with humans in charge (Tesla model)
- We should worry about:
 - Decision-making on key aspects of digital life being ceded to black boxes.
 - Humans need to continue understanding implications of AI discoveries and recommendations
 - Dependence on machine-driven networks may erode people’s abilities to think for themselves
- Research needs to continue in key areas:
 - Human machine collaboration
 - Dealing with changing environments (Continuous learning)
 - Machine have to be able to explain decisions (Explainable AI)
 - Adversarial machine learning
Thank you